Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Levels Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in Rwanda. Is this correct?

Physics Formulas

Motion

  • \(\vec{v}_{\text{f}} = \vec{v}_{\text{i}} + \vec{a}\Delta t\)
  • \(\begin{align} {\vec{v}_\text{f}}^{2} &= {\vec{v}_\text{i}}^{2} +2\vec{a} \cdot \Delta \vec{x} \\ \text{or } {\vec{v}_\text{f}}^{2} &= {\vec{v}_\text{i}}^{2} + 2\vec{a} \cdot \Delta \vec{y} \end{align}\)
  • \(\begin{align} \Delta \vec{x} &= \vec{v}_\text{i} \Delta t + \dfrac{1}{2} \vec{a} (\Delta t)^2 \\ \text{or } \Delta \vec{y} &= \vec{v}_\text{i} \Delta t + \dfrac{1}{2} \vec{a} (\Delta t)^2 \end{align}\)
  • \(\begin{align} \Delta \vec{x} &= \left(\dfrac{\vec{v}_\text{i}+\vec{v}_\text{f}}{2}\right)\Delta t \\ \text{or } \Delta \vec{y} &= \left(\dfrac{\vec{v}_\text{i}+\vec{v}_\text{f}}{2}\right)\Delta t \end{align}\)

Force

  • \(f_{\text{k}} = \mu_{\text{k}}N\)
  • \(f_{\text{s}}^{\;\text{max}} = \mu_{\text{s}}N\)
  • \(\vec{F}_{\text{net}} = m\vec{a}\)
  • \(F = \dfrac{Gm_{1}m_{2}}{d^{2}}\)
  • \(\vec{F}_{\text{net}} = \dfrac{\Delta \vec{p}}{\Delta t}\)
  • \(\Delta \vec{p} = m(\vec{v}_{\text{f}} - \vec{v}_{\text{i}})\)
  • \(\vec{p} = m\vec{v}\)
  • \(w = F_{\text{g}} = mg\)

Work, energy and power

  • \(K = E_{\text{k}} = \dfrac{1}{2}mv^2\)
  • \(U = E_{\text{p}} = mgh\)
  • \(E_{\text{mech}} = E_{\text{k}} + E_{\text{p}}\)
  • \(P = \dfrac{W}{\Delta t}\)
  • \(W = F\Delta x \cos\theta\)
  • \(\begin{align} W_{\text{net}} &= \Delta K \\ \text{or } W_{\text{net}} &= \Delta E_{\text{k}} \end{align}\)
  • \(\begin{align} \Delta K = \Delta E_{\text{k}} &= E_\text{k,f} - E_\text{k,i} \end{align}\)
  • \(\begin{align}W_{\text{nc}} &= \Delta K + \Delta U \\ &= \Delta E_{\text{k}} + \Delta E_{\text{p}} \end{align}\)
  • \(P_{\text{avg}} = Fv_{\text{avg}}\)

Waves, sound and light

  • \(v_{\text{avg}} = \dfrac{D}{\Delta t}\)
  • \(v = f\lambda\)
  • \(T = \dfrac{1}{f}\)
  • \(E = hf\)
  • \(E = h\dfrac{c}{\lambda}\)
  • \(n = \dfrac{c}{v}\)
  • \(n_{1}\sin \theta_{1} = n_{2}\sin \theta_{2}\)
  • \(\theta_{c} = \sin^{-1}\left( \dfrac{n_{2}}{n_{1}} \right)\)
  • \(f_{\text{L}} = \dfrac{v\pm v_{\text{L}}}{v\pm v_{\text{S}}} f_{\text{S}}\)
  • \(\begin{align} E &= W_0 + E_\text{k,max} \\ \text{where } E &= hf \\ \text{and } W_0 &= hf_0 \\ \text{and } E_\text{k,max} &= \dfrac{1}{2}m_\text{e}{v_\text{max}}^2 \end{align}\)

Electromagnetism

  • \(\phi = BA \cos \theta\)
  • \(\mathcal{E} = -N \dfrac{\Delta \phi}{\Delta t}\)

Electrostatics

  • \(Q = nq_{\text{e}}\)
  • \(F = \dfrac{kQ_1Q_2}{r^2}\)
  • \(\vec{E} = \dfrac{\vec{F}}{q}\)
  • \(E = \dfrac{kQ}{r^2}\)
  • \(V = \dfrac{W}{q}\)

Electric circuits

  • \(I = \dfrac{Q}{\Delta t}\)
  • \(R_{\text{s}} = R_1 + R_2 + R_3 + \cdots\)
  • \(\dfrac{1}{R_{\text{p}}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3} + \cdots\)
  • \(R = \dfrac{V}{I}\)
  • \(\begin{align} P & = VI \\ P & = I^2R \\ P & = \dfrac{V^2}{R} \end{align}\)
  • \(E = P \Delta t\)
  • \(W = Vq\)
  • \(W = VI\Delta t\)
  • \(W = I^2R\Delta t\)
  • \(W = \dfrac{V^2\Delta t}{R}\)
  • \(\mathcal{E} = I(R+r)\)
  • \(P = \dfrac{W}{\Delta t}\)

Alternating current

  • \(I_{\text{rms}} = \dfrac{I_{\text{max}}}{\sqrt{2}}\)
  • \(V_{\text{rms}} = \dfrac{V_{\text{max}}}{\sqrt{2}}\)
  • \(P_{\text{avg}} = V_{\text{rms}}I_{\text{rms}}\)
  • \(P_{\text{avg}} = {I_{\text{rms}}}^{2}R\)
  • \(P_{\text{avg}} = \dfrac{{V_{\text{rms}}}^{2}}{R}\)